Data-free Inference of Uncertain Parameters in Chemical Models

نویسندگان

  • Habib N. Najm
  • Robert D. Berry
  • Cosmin Safta
  • Khachik Sargsyan
  • Bert J. Debusschere
چکیده

We outline the use of a data-free inference procedure for estimation of uncertain model parameters for a chemical model of methane-air ignition. The method involves a nested pair of Markov chains, exploring both the data and parametric spaces, to discover a pooled joint posterior consistent with available information. We describe the highlights of the method, and detail its particular implementation in the system at hand. We examine the performance of the procedure, focusing on the robustness and convergence of the estimated joint parameter posterior with increasing number of data chain samples. We also comment on comparisons of this posterior with the missing reference posterior density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The CFD Provides Data for Adaptive Neuro-Fuzzy to Model the Heat Transfer in Flat and Discontinuous Fins

In the present study, Adaptive Neuro–Fuzzy Inference System (ANFIS) approach was applied for predicting the heat transfer and air flow pressure drop on flat and discontinuous fins. The heat transfer and friction characteristics were experimentally investigated in four flat and discontinuous fins with different geometric parameters including; fin length (r), fin interruption (s), fin pitch (p), ...

متن کامل

PSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent

In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...

متن کامل

Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams

A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical a...

متن کامل

Fuzzy Wastewater Quality Index Determination for Environmental Quality Assessment under Uncertain and Vagueness Conditions

Utilization of water in different parts of industrial life cycles brings a huge concern on environmental water and wastewater pollutions. In this research, environmental quality assessment of wastewater is studied using fuzzy logic. Fuzzy appliance is due to existance of statistical considerations (including standard deviations), various uncertainties, non-linearity and complexity of functions....

متن کامل

Statistical Inference in Autoregressive Models with Non-negative Residuals

Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014